HW 1.2.4: Composite Functions

Given each pair of functions, calculate $f(g(0))$ and $g(f(0))$.

1. $f(x)=3 x+6, g(x)=2-x^{2}$
2. $f(x)=2 x+9, g(x)=3+4 x^{2}$
3. $f(x)=\sqrt{x+9}, g(x)=7-x^{3}$
4. $f(x)=\frac{1}{x-3}, g(x)=6 x-3$

Use the table of values to evaluate each expression
5. $f(g(7))$
6. $f(g(4))$
7. $g(f(4))$
8. $g(f(2))$
9. $f(f(3))$
10. $f(f(0))$
11. $g(g(1))$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{g}(\boldsymbol{x})$
0	6	1
1	1	4
2	5	8
3	9	3
4	3	0
5	4	6
6	8	7
7	2	2
8	0	9
9	1	5

12. $g(g(5))$

Use the graphs to evaluate the expressions below.
13. $f(g(2))$
14. $f(g(0))$
15. $g(f(0))$
16. $g(f(5))$
17. $f(f(4))$
18. $f(f(3))$

19. $g(g(1))$
20. $g(g(5))$

For each pair of functions, find $f(g(x))$ and $g(f(x))$. Simplify your answers.
21. $f(x)=\frac{1}{x+5}, g(x)=\frac{2}{x}-5$
22. $f(x)=\frac{1}{2 x+6}, g(x)=\frac{4}{x}-3$
23. $f(x)=2 x^{2}-1, g(x)=\sqrt{x+4}$
24. $f(x)=\sqrt{x}-3, g(x)=3 x^{2}-4$
25. $f(x)=|x|, g(x)=2 x-3$
26. $f(x)=\sqrt[3]{x}, g(x)=\frac{x+5}{x^{3}}$
27. If $f(x)=x^{4}-5, g(x)=x+5$ and $h(x)=2 \sqrt{x}$, find $f(g(h(x)))$
28. If $f(x)=2 x^{2}+3, g(x)=\frac{1}{x}$ and $h(x)=5-x$, find $f(g(h(x)))$
29. Given functions $p(x)=\frac{1}{\sqrt{x}}$ and $m(x)=x^{2}-1$, state the domains of the following functions using interval notation.
a. Domain of $\frac{p(x)}{m(x)}$
b. Domain of $p(m(x))$
c. Domain of $m(p(x))$
30. Given functions $q(x)=\frac{1}{\sqrt{x}}$ and $h(x)=x^{2}-25$, state the domains of the following functions using interval notation.
a. Domain of $\frac{q(x)}{h(x)}$
b. Domain of $q(h(x))$
c. Domain of $h(q(x))$
31. The function $D(p)$ gives the number of items that will be demanded when the price is p. The production cost, $C(x)$ is the cost of producing x items. To determine the cost of production when the price is $\$ 10$, you would do which of the following:
a. Evaluate $D(C(10))$
b. Evaluate $C(D(10))$
c. Solve $D(C(x))=10$
d. Solve $C(D(p))=10$
32. The function $S(h)$ gives the sleep level on a scale of $0-10$ experienced by a person with h hours of sleep without exercise. The amount of sleep of the person after t minutes of exercise is modeled by $e(t)$. To determine when the patient will be at a sleep level of 8 , you would need to:
a. Evaluate $S(e(8))$
b. Evaluate $e(S(8))$
c. Solve $S(e(t))=8$
d. Solve $e(S(h))=8$
33. The radius r, in inches, of a basketball is related to the volume, V, by $r(V)=\sqrt[3]{\frac{3 V}{4 \pi}}$. Air is pumped into the basketball, so the volume after t seconds is given by $V(t)=12+18 t$.
a. Find the composite function $r(V(t))$
b. Find the time when the radius reaches 9 inches.
34. The number of bacteria in a refrigerated food product is given by $N(T)=24 T^{2}-91 T+165$, $3<T<33$, where T is the temperature of the food. When the food is removed from the refrigerator, the temperature is given by $T(t)=3 t+1.6$, where t is the time in hours.
a. Find the composite function $N(T(t))$
b. Find the time when the bacteria count reaches 9607

Find functions $f(x)$ and $g(x)$ so the given function can be expressed as $h(x)=f(g(x))$.
35. $h(x)=(x-3)^{2}$
36. $h(x)=(x+8)^{3}$
37. $h(x)=\frac{9}{x+4}$
38. $h(x)=\frac{1}{(x-1)^{2}}$
39. $h(x)=8-\sqrt{x+6}$
40. $h(x)=5+\sqrt[3]{x}$

