HW 2.2.1: Complex Roots Visualization

1. Consider the graph of $f(x)=x^{2}-4 x+5$
a. Graph $f(x)$ in detail in the $x y$ plane of the coordinate system provided on the next page without using a graphing calculator.
b. What conclusion can you make about the roots of $f(x)$?
c. Show that $2-i$ is a root for $f(x)$.
d. Show that $f(2-3 i)$ is a real number.
e. Show that $f(3+i)$ is not a real number.
f. Try a few more complex values and make a conjecture about values of a and b for which $f(a+b i)$ is a real number. Explain how you arrived at your conjecture and prove that it is true.
g. Lastly, draw a graphical representation of what your above answer imply about the realvalued outputs of f with regard to the inclusion of a complex domain.

2. Consider the graph of $f(x)=x^{2}+8 x+18$
a. Graph $f(x)$ in detail in the $x y$ plane of the coordinate system provided on the next page without using a graphing calculator.
b. What conclusion can you make about the roots of $f(x)$?
c. Show that $-4+\sqrt{2} i$ is a root for $f(x)$.
d. Show that $f(-4-3 i)$ is a real number.
e. Show that $f(3+2 i)$ is not a real number.
f. Try a few more complex values and make a conjecture about values of a and b for which $f(a+b i)$ is a real number. Explain how you arrived at your conjecture and prove that it is true.
g. Lastly, draw a graphical representation of what your above answer imply about the realvalued outputs of f with regard to the inclusion of a complex domain.

