2.3 Conic Sections - Parabola

Parabola (locus definition) Set of all points equidistant from a Focus to a Directrix.

Standard Form of a Parabola:

Vertical Parabola
$(x-h)^{2}=4 p(y-k)$

Horizontal Parabola
$(y-k)^{2}=4 p(x-h)$
vertex $=(\mathrm{h}, \mathrm{k})$
$\mathrm{p}=$ distance from vertex to focus
Focus: $(h, k+p)$
Directrix: $y=k-p$
Focus: $(h+p, k)$
Directrix: $x=h-p$

$\longleftrightarrow D$
$4 \mathrm{p}=$ Latus Rectum $=$ focal diameter of the parabola

Ex. Graph $(x+1)^{2}=-8(y-3)$
Vertical Parabola
Vertex: $(-1,3)$
$\mathrm{p}=-2$
Focus: $(-1,1)$
Directrix: $y=5$

Ex. Consider the equation $y^{2}+4 y+8 x=4$. Put this equation into standard form and identify the vertex, focus, directrix, and graph.
$y^{2}+4 y+8 x=4$
$y^{2}+4 y=-8 x+4$
$y^{2}+4 y+4=-8 x+4+4$
$(y+2)^{2}=-8 x+8$
$(y+2)^{2}=-8(x-1)$
complete the square in y only
factor

Vertex: $(1,-2)$

Focus: $(-1,-2)$
Directrix: $x=3$

Ex. A satellite dish is to be constructed in the shape of a paraboloid of revolution. If the receiver placed at the focus is located 2 ft above the vertex of the dish, how deep will the dish be?

Use $(0,0)$ as the vertex, $(6, y)$ a point on the parabola, $\mathrm{p}=2$, and plug into the standard form of a vertical parabola.

$$
\begin{aligned}
& (x-0)^{2}=4 p(y-0) \\
& x^{2}=4(2) y \\
& (6)^{2}=8 y \\
& \frac{36}{8}=y \\
& \frac{9}{2}=y=4.5
\end{aligned}
$$

In Exercises 1-6, sketch the graph of the given parabola. Find the vertex, focus, and directrix. Include the endpoints of the latus rectum in your sketch.

1. $(x-3)^{2}=-16 y$
2. $\left(x+\frac{8}{5}\right)^{2}=4\left(y+\frac{9}{4}\right)$
3. $(y-8)^{2}=-10(x+7)$
4. $(y+4)^{2}=4 x$
5. $(x-4)^{2}=2(y+6)$
6. $(y-1)^{2}=24(x-3)$

In Exercises 7-10, put the equation into standard form and identify the vertex, focus, and directrix.
7. $y^{2}-6 y-36 x+117=0$
8. $2 x^{2}+4 x+3 y-4=0$
9. $x^{2}+6 x-9 y+81=0$
10. $x^{2}-8 x+6 y+4=0$

In Exercises 11-12, find an equation for the parabola which fits the given criteria.
11. Vertex $(3,0)$, focus $(0,0)$
12. Focus $(12,3)$, directrix $x=6$
13. The mirror in Alan's flashlight is a paraboloid of revolution. If the mirror is 8 centimeters in diameter and 4.5 centimeters deep, where should the light bulb be placed so it is at the focus of the mirror?
14. A parabolic TV antenna is constructed by taking a flat sheet of metal and bending it into a parabolic shape. If the cross of the antenna is a parabola which is 50 centimeters wide and 30 centimeters deep, where should the receiver be placed to maximize reception?
15. A parabolic arch is constructed which is 8 feet wide at the base and 13 feet tall in the middle. Find the height of the arch exactly 2 feet in from the base of the arch.

