HW 3.2.1: Half-Life

$$
\begin{aligned}
& N(t)= N_{0} e^{-\frac{t \ln 2}{h}} \quad \text { or } \quad N(t)=N_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}} \\
& N_{0}=\text { initial amount } \\
& t=\text { time in (unit given as half-life) } \\
& h=\text { length of half-life }
\end{aligned}
$$

In Exercises 1-5, complete the following:

- Create a function, $N(t)$, for the amount of isotope after t years.
- Determine how long it takes for 80% of the material to decay. Round answers to two decimal places. (Make sure you are comfortable using both half-life formulas.)

1. Cobalt 60 , used in food irradiation, initial amount 60 grams, half-life of 5.27 years.
2. Fluorine 18 , used in medical radiotracer, initial amount 5 milligrams, half-life 110 minutes.
3. Iodine 131, used in nuclear medicine, initial amount 85 milligrams, half-life 8 days.
4. Americium 241, used in smoke detectors, initial amount 0.34 micrograms, half-life 432.7 years.
5. Carbon 14, used for radiocarbon dating, initial amount 15 kg grams, half-life 5,700 years.
6. How many half-lives have passed if 6.25% of the material remains? (Do not use a calculator.)

Answers:

1. $N(t)=60 e^{-\frac{t \ln 2}{5.27}}$ or $N(t)=60\left(\frac{1}{2}\right)^{\frac{t}{5.27}} ; 12.237$ years
2. $N(t)=5 e^{-\frac{t \ln 2}{110}}$ or $N(t)=5\left(\frac{1}{2}\right)^{\frac{t}{110}} ; \quad 255.402$ minutes
3. $N(t)=85 e^{-\frac{t \ln 2}{8}}$ or $N(t)=85\left(\frac{1}{2}\right)^{\frac{t}{8}} ; \quad 18.575$ days
4. $N(t)=0.34 e^{-\frac{t \ln 2}{432.7}}$ or $N(t)=0.34\left(\frac{1}{2}\right)^{\frac{t}{432.7}} ; \quad 1004.7$ years
5. $N(t)=15 e^{-\frac{t \ln 2}{5700}}$ or $N(t)=15\left(\frac{1}{2}\right)^{\frac{t}{5700}} ; \quad 13,235$ years
6. 50% decay $=1$ half-life, $\left(\frac{1}{2}\right)^{2}=\frac{1}{4}=25 \%$ remaining $=2$ half-lives, $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}=12.5 \%$ remaining $=$ 3 half-lives, $\left(\frac{1}{2}\right)^{4}=\frac{1}{16}=6.25 \%$ remaining $=4$ half-lives
