HW 4.6.1: Building a Roller Coaster

A model rollercoaster has been assigned to you in which the entrance starts at $(0,12)$ and exits at $(12,0)$. The rollercoaster has a local minimum at $(5,1)$ and a local maximum at $(9,6)$. The slope of the curve at the entrance and exit points must be zero in order to facilitate getting on and off the roller coaster car.

Create a piecewise function using the cosine function that creates a smooth model that satisfies the requirements above.

Create a piecewise function using the sine function that creates a smooth model that satisfies the requirements above.
[Challenge] Create a piecewise function using the quadratic or cubic function that creates a smooth model that satisfies the requirements above.

Teacher Note: To do the piecewise correctly the student will need to use Calculus

Partial Selected Answers using Desmos.com:
Cosine Piecewise (answers may vary)
(1) $y=5.5 \cos \left(\frac{\pi}{5}(x)\right)+6.5\{0<x<5\}$
$\vee y=-2.5 \cos \left(\frac{\pi}{4}(x-5)\right)+3.5\{5<\mid x<9\}$
(ป $y=3 \cos \left(\frac{\pi}{3}(x-9)\right)+3\{9<x<12\}$

Sines (answers may vary)

$$
\begin{aligned}
& \text { (1) } y=-5.5 \sin \left(\frac{\pi}{5}(x-2.5)\right)+6.5\{0<x<5 \\
& \text { (1) } y=2.5 \sin \left(\frac{\pi}{4}(x-7)\right)+3.5\{5<x<9\} \\
& y=-3 \sin \left(\frac{\pi}{3}(x-10.5)\right)+3\{9<x<12\}
\end{aligned}
$$

