Notes 2.2 - Logarithms

Evaluate.

* WARM UP *

$\begin{aligned} & 4^{-3}=\frac{1}{44^{3}} \\ & \frac{1}{6}\end{aligned}$
$16^{\frac{1}{4}}=[2$
$\left(\frac{2}{3}\right)^{-3}=\frac{27}{8}$
(2) ${ }^{6}(2)^{8}$
$(3)^{-2}(3)^{5}$
$\frac{3^{7}}{3^{4}}=27$

$$
2^{14}
$$

$3^{3}=27$

3

$$
\begin{array}{ll}
\frac{4^{3}}{4^{-1}}=4^{4} & \left(7^{3}\right)^{5} \\
& 256 \\
7^{15}
\end{array}
$$

$$
8^{\frac{2}{3}}
$$

$$
\begin{gathered}
\sqrt[3]{8^{2}}=4 \\
(\sqrt[3]{8})^{2}=4
\end{gathered}
$$

Notes 2.2 - Logarithms * EXPLORATION *

What is a logarithm?
IT'S AN EXPONENT

What does it do?

How does it look?

$$
\log _{3} 9=2
$$

$$
3^{2}=9
$$

Notes 2.2 - Logarithms

Reading Math

Read $\log _{\mathrm{b}} a=x$, as "the log base b of a is x." Notice that the log is the exponent.

Notes 2.2 - Logarithms

Write the following in logarithmic form.

$$
\begin{array}{ll}
3^{5}=243 & \left(\frac{1}{2}\right)^{0}=1 \\
\log _{3} 243=5 & \log _{\frac{1}{2}} 1=0 \\
4^{-2}=\frac{1}{16} & b^{a}=x
\end{array}
$$

$$
\log _{4} \frac{1}{16}=-2
$$

$$
\log _{b} x=a
$$

Notes 2.2 - Logarithms

Write the following in exponential form.

$$
\begin{array}{ll}
\log _{2} 8=3 & \log _{4}\left(\frac{1}{16}\right)=-2 \\
2^{3}=8 & 4^{-2}=\frac{1}{16} \\
\log _{8}(2)=\frac{1}{3} & \log 100=2 \\
8^{1 / 3}=2 & 10^{2}=100
\end{array}
$$

Notes 2.2 - Logarithms

Evaluate without a calculator.

$$
\begin{array}{ll}
\log _{3} 27=3 & \log _{6}\left(\frac{1}{36}\right)=-2 \\
\log _{5} 5=1 & \log 1000=3 \\
\log _{6}\left(\frac{1}{36}\right)=-2 & \log _{49}(7)=\frac{1}{2}
\end{array}
$$

Notes 2.2 - Logarithms

Special Logarithms.

The common logarithm.

$$
10^{x}=a \quad \log a=x
$$

The Natural Logarithm.

$$
e^{x}=a \quad \ln a=x
$$

Notes 2.2 - Logarithms

Inverse Properties of Logarithms and Exponents

For any base b such that $b>0$ and $b \neq 1$,

ALGEBRA	EXAMPLE	
	$\log _{\Delta} b^{x}=x$	
$b^{\log _{b} x}=x$		$10^{\log _{10} 2}=2$

$5 \log _{5} 729=729$

Notes 2.2 - Logarithms

Inverse and Special Logarithms Practice

Rewrite in other form.

$$
\begin{array}{ll}
10^{2}=100 & \ln b=a \\
\log (00=2 & e^{a}=b
\end{array}
$$

$$
e^{x}=t
$$

$$
\ln t=x \quad 10^{y}=x
$$

Evaluate without a calculator
$\log \frac{1}{100}=-2 \quad \log _{7} 7^{82}=82$
$\log x=y \quad \ln e^{245}$
$\log _{245} e^{245}$
$4^{\log _{4} 25}$

