

Notes 2.3 - Properties of Logarithms * WARM UP *

Evaluate.

$$\log_7 49 = 2$$

$$\log_{49} 7 = \frac{1}{2}$$

$$\log_7\left(\frac{1}{49}\right) = -2$$

$$\log_{49}\left(\frac{1}{7}\right) = -\frac{1}{2}$$

$$\log_7 7 =$$

* EXPLORATION *

Recall the product property of exponents.

$$b^m b^n = b^{m+n}$$

Let's prove the product property of logarithms.

Let
$$x = b^m$$
 and $y = b^n$

Remember that to *multiply* powers with the same base, you *add* exponents.

$$b^mb^n=b^{m+n}$$

Product Property of Logarithms

For any positive numbers m, n, and $b(b \neq 1)$,

WORDS	NUMBERS	ALGEBRA
The logarithm of a product is equal to the sum of the logarithms of its factors.	$\log_3 1000 = \log_3 (10 \cdot 100)$ $= \log_3 10 + \log_3 100$	$\log_b mn = \log_b m + \log_b n$

Remember that to divide powers with the same base, you subtract exponents

$$\frac{b^m}{b^n} = b^{m-n}$$

Quotient Property of Logarithms

For any positive numbers m, n, and $b(b \neq 1)$,

WORDS	NUMBERS	ALGEBRA
The logarithm of a quotient is the logarithm of the dividend minus the logarithm of the divisor.	$\log_5\left(\frac{16}{2}\right) = \log_5 16 - \log_5 2$	$\log_b \frac{m}{n} = \log_b m - \log_b n$

$$(b^m)^n = b^m$$

Power Property of Logarithms

For any real number p and positive numbers a and b ($b \neq 1$),

WORDS	NUMBERS	ALGEBRA
The logarithm of a power is the product of the exponent and the logarithm of the base.	log 10 ³ log (10 • 10 • 10) log 10 + log 10 + log 10 3 log 10	$\log_b a^p = p \log_b a$

Condense as a single logarithm and simplify, if possible.

$$\log_6 4 + \log_6 9 = \log_6 36 = 2$$

$$\log_{\frac{1}{3}} 27 + \log_{\frac{1}{3}} \frac{1}{9}$$
 $\log_{\frac{1}{3}} 27 + \log_{\frac{1}{3}} \frac{1}{9} = \boxed{-1}$

Condense as a single logarithm and simplify, if possible.

$$\log_5 100 - \log_5 4 = \log_5 25 = 2$$

$$\log_7 49 - \log_7 7 = \log_7 7 = 1$$

Express as a product and simplify, if possible.

$$\log_2 32^6 = 6 \log_2 32 = 6.5 = 30$$

$$\log_{16} 4^{20} = 20 l_{016} 4 = 10$$

$$\log_5 25^2 = 2 \log_5 25 = 4$$

Expand.

$$\log_{6} \frac{x^{4}}{y}$$

$$\log_{6} x^{4} - \log_{6} y$$

$$4\log_{6} x - \log_{6} y$$

$$\ln \left(w\sqrt[3]{u \cdot v}\right)$$

$$\ln \left(\omega \left(uv\right)^{1/3}\right)$$

$$\ln \left(\omega u^{1/3}, 1/3\right)$$

$$\ln \omega + \ln u^{1/3} + \ln v^{1/3}$$

$$lnw + lnu + lnv$$
 3

Condense.

$$5\log_8 x + 5\log_8 y$$

$$log(x^5, y^5)$$

$$\ln z + \frac{\ln x}{3} + \frac{\ln y}{3}$$

$$\left(\sqrt{2 \cdot x^{\frac{1}{3}}}, \sqrt{\frac{1}{3}} \right)$$

$$\left(\sqrt{2 \cdot x^{\frac{1}{3}}}, \sqrt{\frac{1}{3}} \right)$$

