Notes 2.4 - Solving Exponential and Logarithmic Equations
 * WARM UP *

Solve for x .

$$
\log _{3} x=2
$$

$$
x=9
$$

Which domain values are not
allowed in the expression below?
$\log _{3} x$

Notes 2.4 - Solving Exponential and Logarithmic Equations

What is an exponential equation?

$$
3^{x+2}=15
$$

Notes 2.4 - Solving Exponential and Logarithmic Equations

There are 2 ways to solve exponential equations.

1] Write both sides of the equation in terms of the same base.

* Keep answers exact, no calculator necessary. *

Notes 2.4 - Solving Exponential and Logarithmic Equations

Solve and check.
$9^{8-x}=27^{x-3}$
$\left(3^{2}\right)^{8-x}=\left(3^{3}\right)^{x-3}$

$16-8 x=3 x-9$

$$
\begin{gathered}
\frac{25}{5}=\frac{5 x}{5} \\
x=5
\end{gathered}
$$

Notes 2.4 - Solving Exponential and Logarithmic Equations

There are 2 ways to solve exponential equations.

2] Take the logarithm of both sides.
Recall...

$$
\log _{b} b^{x}=x
$$

* Keep answers exact, no calculator necessary. *

Notes 2.4 - Solving Exponential and Logarithmic Equations

Solve and check.	
$4^{x-1}=5$	$7^{-x}=21$
$4^{x-1}=5$	
$\log _{4} 4^{x-1}=\log _{4} 5$	$\log _{7} 7^{-x}=\log _{7} 21$ $\frac{-x=\log _{7} 21}{-1}$ $x+1$
$x=\log _{4} 5+1$	$x=-\log _{7} 21$

Notes 2.4 - Solving Exponential and Logarithmic Equations

What is a logarithmic equation?

$$
\log _{2}(x+4)=2
$$

Notes 2.4 - Solving Exponential and Logarithmic Equations

We can apply the same base exponent rule to logarithms.

$$
\text { If } b^{x}=b^{y} \text {, then } \quad x=y .
$$

Therefore, we can also say...

$$
\text { If } \log _{\underline{b}} x=\log _{\underline{b}} y \text {, then } x=y .
$$

$$
\begin{gathered}
\log _{3}(2 x-1)=\log _{3}(x+5) \\
2 x+1=x+5 \\
-x+x+x+1 \\
x=6]
\end{gathered}
$$

Notes 2.4 - Solving Exponential and Logarithmic Equations

To solve a logarithmic equation, recall...
$b^{\log _{b} x}=x$

What logarithmic values result in errors?

$$
\log _{b} x, x>0
$$ Logarithmic Equations

Solve and check.

$$
\begin{array}{l|l}
\log _{6}(2 x-1)=-1 & \log _{4} 100-\log _{4}(x+1)=1 \\
\log _{6}(2 x-1) \\
66^{-1} & \log _{4}\left(\frac{100}{x+1}\right)=1 \\
2 x-1=\frac{1}{6}+\frac{1}{1(6)} & 4^{\log _{4}\left(\frac{100}{x+1}\right)}=1
\end{array}
$$

$$
\begin{aligned}
\ell_{x} & =\frac{7}{6} \cdot \frac{1}{2} \\
x & =\frac{7}{12}
\end{aligned}
$$

$$
\begin{gathered}
(x+1) \frac{100}{x+1}=4(x+1) \\
\frac{100}{4}=\frac{y(x+1)}{4} \\
25=x+1 \\
-1-1 \\
x=24
\end{gathered}
$$

Notes 2.4 - Solving Exponential and Logarithmic Equations

Notes 2.4 - Solving Exponential and Logarithmic Equations

Solve and check.	$2 \log x-\log 4=0$
$3=\log 8+3 \log x$	
$3=\log 8+\log x^{3}$	$\log x^{2}-\log 4=0$
$3=\log 8 x^{3}$	$\log \frac{x^{2}}{4}=0$
$10^{3}=10^{\log 8 x^{3}}$	$10^{\log }=10^{0}$
$\frac{1000}{8}=\frac{8 x^{3}}{8}$ $\left.\frac{x^{2}}{4}=14\right)$ $\sqrt[3]{\frac{1000}{8}}=\sqrt[3]{x^{3}}$ $x= \pm 2$ $\frac{10}{2}=x$ $x=2$ $x=5$ $\log _{5} x^{2}$	

$$
\begin{aligned}
& \log _{5} x^{2} \quad \log _{5}(x+3) \\
& \log _{5} 5^{2} \quad \log _{5}-5^{2} \\
& x>0
\end{aligned}
$$

