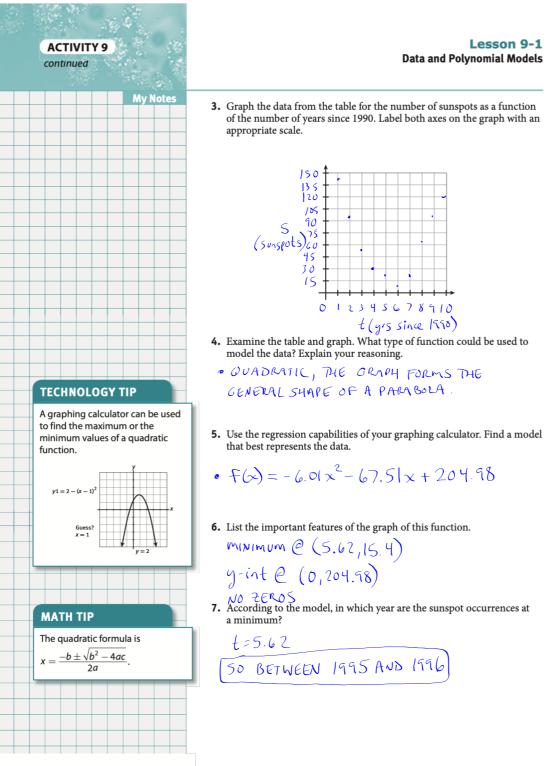
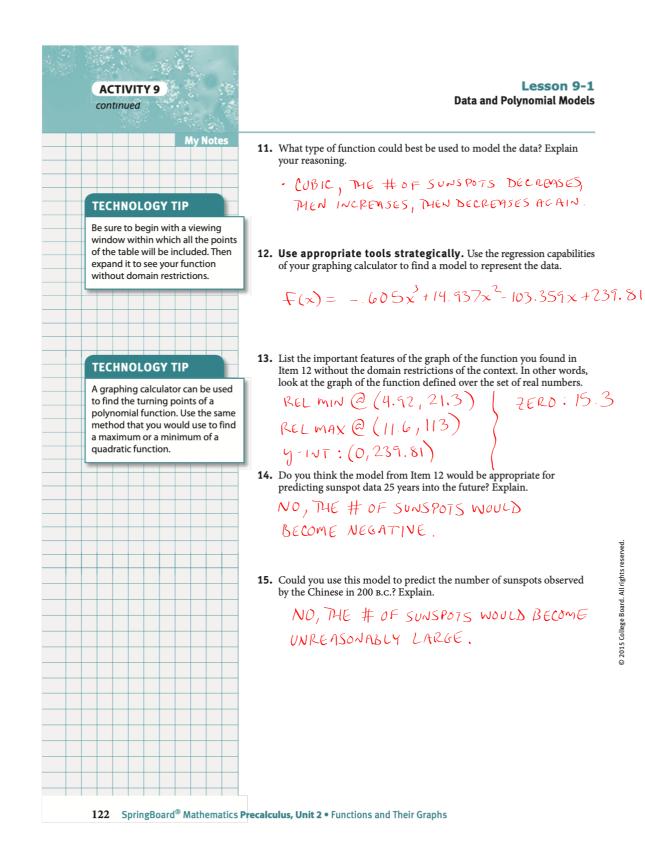

Unit 2: Functions and Their Graphs

* UNPACKING EA 1 *


Skill	Торіс					
find	quartic functions, y-intercepts					
graph, sketch	quartic model, polynomia l					
explain	quartic model, x -intercepts (zeros), complex zeros, turning points					
factor	polynomials					
write	functions, polynomial (standard)					
create	inequality					

All rights I © 2015 College Board.



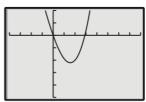
2015

120 SpringBoard[®] Mathematics **Precalculus, Unit 2** • Functions and Their Graphs

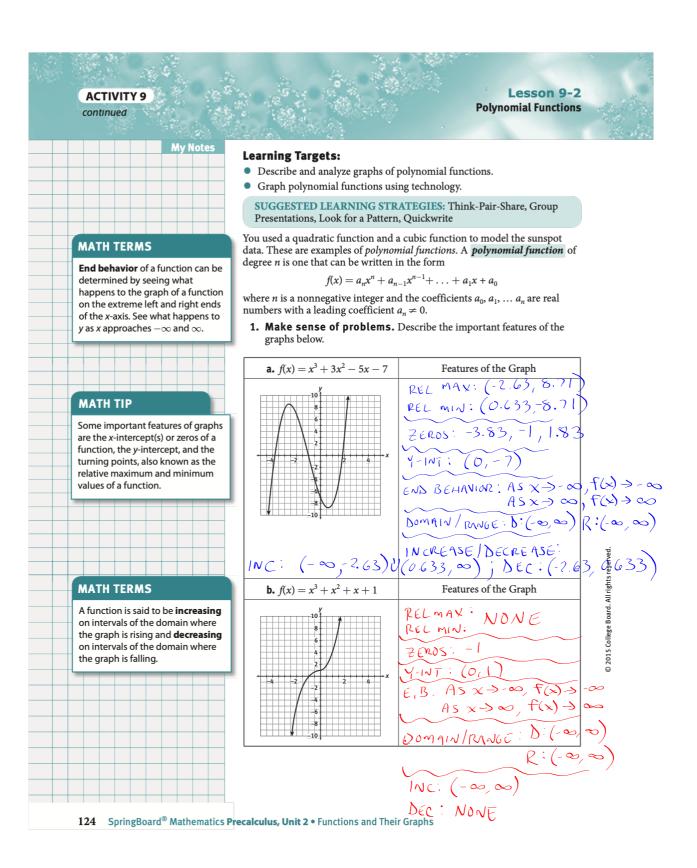
on 9-1 Id Polyne	omial Models			ACTIVITY 9 continued
	-1	5 4 - 1 - 4 - - 4 - -		My Notes
number	lel you found in Item of sunspots is 200.			
200 =	$= 6.011x^2 - 6^2$	$7.513 \times + 20$	4.983	
	$\chi = 0.07$	$\chi = 11.2$		
	$\chi = 0.07$ [1990 A~	D 2001		
ason qu	antitatively. Do yo	ou think the quadrat	ic model is	
	the distant past and f	-	10 V	
Ν0,	THE DATA W	IL ONLY WO	TRANC	
Foi	2 AN IMMED	ALE MME	FRITE.	
e below s	hows sunspot data fr	om the year 1991 to	2005.	
Year	Sunspots	Year	Sunspots	MATH TERMS
1991	146	1999	93	A function value <i>f</i> (<i>a</i>) is a relative
1992	94	2000	120	maximum of <i>f</i> if there is an interval around <i>a</i> where, for any <i>x</i>
993	55	2001	111	in that interval, $f(a) \ge f(x)$.
994	30	2002	104	A function value <i>f</i> (<i>a</i>) is a relative minimum of <i>f</i> if there is an interva
	18	2003	64	around <i>a</i> where, for any <i>x</i> in that interval, $f(a) \le f(x)$.
1995	10			
	9	2004	40	Relative maxima and minima are
1996		2004 2005	40 30	Relative maxima and minima are often referred to as turning points .
	9			often referred to as turning
1998 aph the d	9 22 64 ata from the table fo the year since 1990. 1	2005 r the number of sun	30	often referred to as turning
1996 1997 1998 aph the d action of t appropria	9 22 64 ata from the table fo the year since 1990. I ate scale.	2005 r the number of sun	30	often referred to as turning
1996 1997 1998 ph the d ction of appropria	9 22 64 ata from the table fo the year since 1990. I ate scale.	2005 r the number of sun	30	often referred to as turning
1996 1997 1998 ph the d ction of t appropria	9 22 64 ata from the table for the year since 1990. If ate scale.	2005 r the number of sun	30	often referred to as turning
1996 1997 1998 ph the d ction of appropria (5) (3) 13 14 8 9	9 22 64 ata from the table for the year since 1990. If ate scale.	2005 r the number of sun	30	often referred to as turning
1996 1997 1998 1998 1998 1998 (3) 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	9 22 64 ata from the table for the year since 1990. If the year since 1990. If the year scale.	2005 r the number of sun	30	often referred to as turning
1996 1997 1998 aph the d cction of t appropria (5 (3) 13 14 16 5 7 (6)	$\begin{array}{c} 9\\ \hline 9\\ \hline 22\\ \hline 64\\ \hline \end{array}$	2005 r the number of sun	30	often referred to as turning
1996 1997 1998 uph the d ction of f appropria (3 13 13 14 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	$\begin{array}{c} 9\\ \hline 9\\ \hline 22\\ \hline 64\\ \hline \end{array}$	2005 r the number of sun	30	often referred to as turning
1996 1997 1998 1998 1998 1998 (3) 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	9 22 64 ata from the table for the year since 1990. If ate scale.	2005	30	often referred to as turning
1996 1997 1998 ph the d ction of t ppropria (3 (3 (3) 1 (8 (3) (3) (3) (3) (3) (3) (3) (9 22 64 ata from the table for the year since 1990. If ate scale.	2005 r the number of sun	30	often referred to as turning

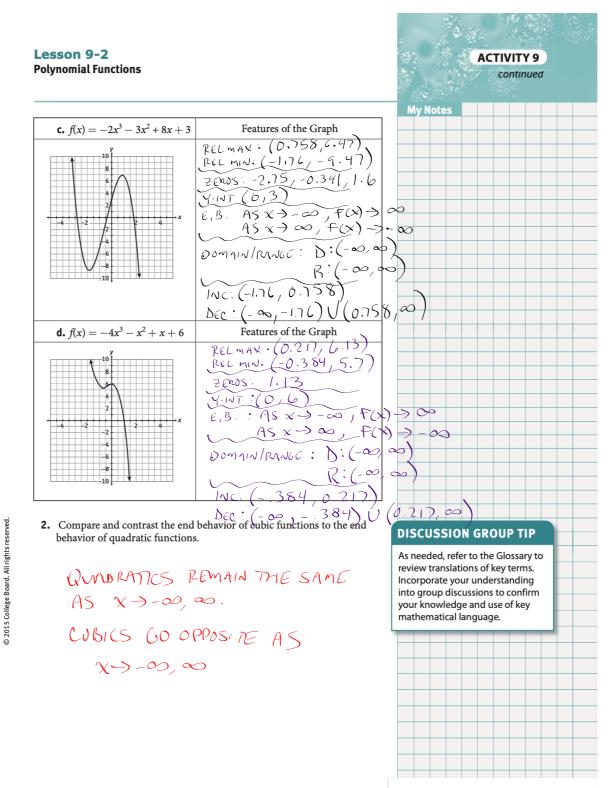
© 2015 College Board. All rights reserved.

Lesson 9-1 Data and Polynomial Models										2 (A	CTIV co	/ITY ntinu
Check Your Und	erstandi	ng							My Notes			
Use notebook paper 16. Find a model to							_		16]			
x -4 y -3		-1 1	0 1.5	1	4 -2	6 -8			y=-0.2	596;	× + C).009
17. Graph the equation you found in Item 16. List the important features of the graph.									17]		<u>f</u> r	nAy
18. Describe the ch modeled by a li			data se	t that c	ould b	e accura	ately			11		Q(
LESSON 9-1	PRACT	ICE							202	05a		

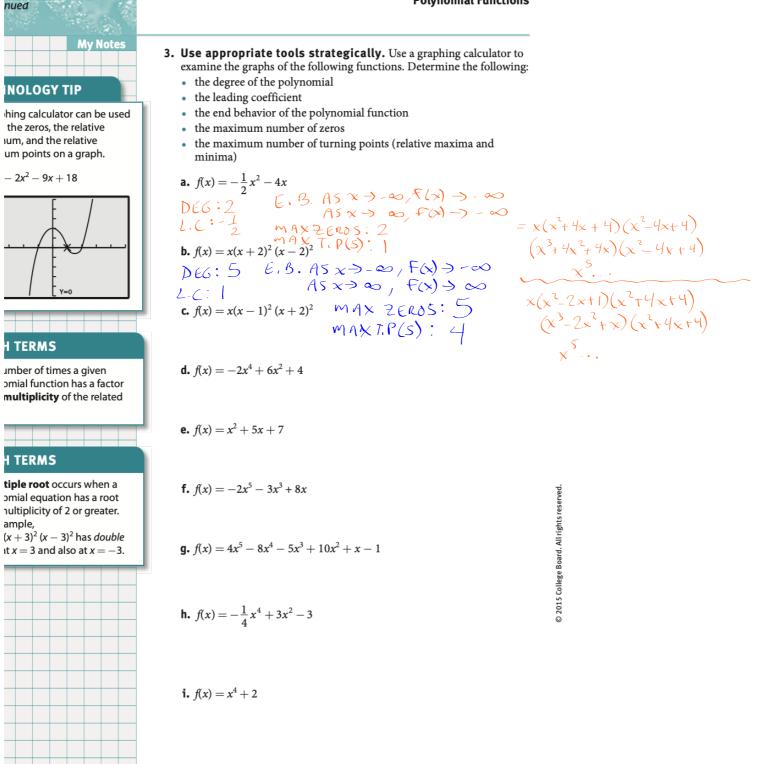

19. Examine the data in the table. What type of function could be used to model the data? Explain your reasoning.


x	1	2	3	4	5	6	7	8	9	10
y	49	22	16	12	10	14	19	17	10	3

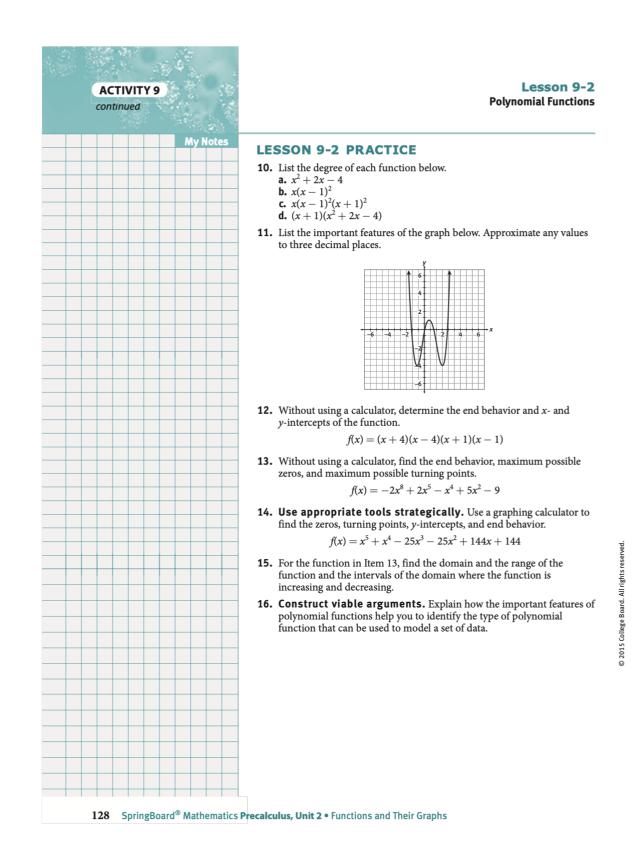

- **20.** Use the regression capabilities of your graphing calculator to find a model that best represents the data in Item 19.
- **21. Attend to precision.** Graph the equation you found in Item 19. List the important features of the graph. Approximate any values to three decimal places.
- **22.** An insect population doubles each month. What type of function could be used to model the data for the number of insects as a function of the number of months since January 2012? Explain your reasoning.
- **23. Critique the reasoning of others.** Jenna says the graph on her calculator, as shown below, must represent a quadratic function. Is she correct? Explain your reasoning.


All rights I

© 2015 College Board



Activity 9 • Polynomials 125



SpringBoard[®] Mathematics Precalculus, Unit 2 • Functions and Their Graphs

STD FORM: $\chi^4 + \chi^3 + 2\chi^2 - 5\chi + 2$

Lesson 9-2	ACTIVITY 9	000	
Polynomial Functions	continued		
4. For each of the functions in Items 3a to 3d, find the domain and the range of the function, the zeros, the relative maximum and relative minimum points, and the intervals of the domain where the function is increasing and decreasing.			
5. What is the relationship between double roots of a polynomial and relative maximum and minimum values?			
Check Your Understanding			
Use notebook paper to write your answers.6. Reason abstractly. List the important features of the graph below. Approximate any values to three decimal places.			
$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $			
7. Without using a calculator, list end behavior and <i>x</i> - and <i>y</i> -intercepts of the function.			
f(x) = (x + 2)(x - 2)(x + 5)(x - 5)(x + 7) 8. Use a graphing calculator to find the zeros, turning points,			
<i>y</i> -intercepts, and end behavior. $f(x) = x^5 + 5x^4 - 68x^3 - 340x^2 + 256x + 1280$			
9. Compare and contrast the end behavior of linear functions to the end behavior of quadratic functions.			

Activity 9 • Polynomials 127

Polynomials Sunspots

ACTIVITY 9 PRACTICE

Write your answers on notebook paper. Show your work.

Lesson 9-1

 Examine the data in the table. What type of function could be used to model the data? Explain your reasoning.

x	-6	-5	-4	-3	-2	-1	0	1	2	3
у	-5	-1	5	9	10	6	5	-1	-7	-13

- **2.** Use the regression capabilities of your graphing calculator to find a model that best represents the data in Item 1.
- **3.** Graph the equation you found in Item 2. List the important features of the graph. Approximate any values to three decimal places.
- **4.** Use the regression capabilities of your graphing calculator to create a model to represent the data in the table.

	x	-1	0	1	2	3	5
[у	-3	3	3.5	1	-1.5	5

5. Graph the function you found in Item 4 and list the important features of the graph.

- **6.** The graph of data in a data table falls along a curve. Which type of function is *not* an appropriate model for the data in the table?
 - A. linear B. exponential
- **C.** quadratic

ights

All r

© 2015 College Board.

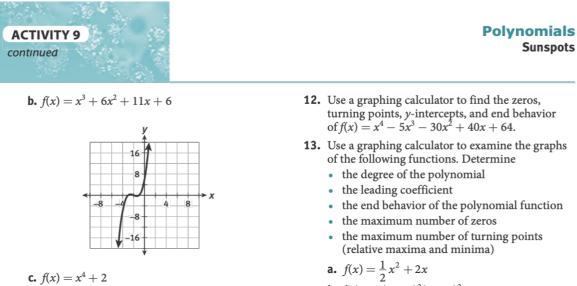
D. cubic

7. A small community theater makes slight changes to Saturday night ticket prices each week for 6 weeks. They record the data each week. The table below shows total ticket revenue, in dollars, as a function of ticket price.

ACTIVITY 9

continued

Ticket Price (x)	10	15	20	25	30	35
Total Revenue (y)	450	645	800	925	780	700

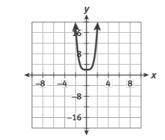

- **a.** Use the regression capabilities of your graphing calculator to find a model that best represents this situation.
- **b.** Use your calculator to graph the equation you found in part a.
- **c.** The theater wants to set ticket prices at the price that will maximize revenue based on the data they recorded. What is the optimal ticket price? Explain your reasoning.

Lesson 9-2

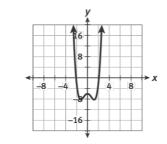
- **8.** List the degree of each function below. **a.** $12x^2 + 3x^6 - 14x$
- **b.** $x^3(x-3)^2$ **c.** $(x+7)^2(x-2)^2$
- 9. List the important features of each graph. Approximate any values to three decimal places.
 a. f(x) = -2x³ 2x² + 9x + 1

)	(_
		1	16-	-			
			8-	^			
*	-8	-4	H	1	4	8	⇒x
		Ĥ	Ą		Ť		
			16-		1		
			1	1			

Activity 9 • Polynomials 129


b.
$$f(x) = x(x+1)^2(x-x)^2$$

b. $f(x) = x(x + 1)^2(x - 1)^2$ **c.** $f(x) = x^3 + 10x^2 + 31x + 30$


- **14.** For the functions in Item 13, parts a–c, find the domain and the range of the function, zeros, relative maximum and relative minimum points, and the intervals of the domain where the function is increasing and decreasing.
- **15.** Roberto claims that if he knows the degree of a polynomial function, he can correctly determine exactly how many turning points are in the function's graph. Is Roberto correct? If not, explain his error.
- **16.** Write to another student describing a pattern you have recognized among polynomials of different degrees. Write to explain how the pattern is related to features of the various functions.

MATHEMATICAL PRACTICES Look For and Make Use of Structure

- 17. Explain how zeros and end behavior of polynomial functions and their graphs are related to the degree and the factors of the polynomial.
- © 2015

d. $f(x) = x^4 - 3x^2 - 6$

- **10.** Without using a calculator, find the end behavior and x- and y-intercepts of f(x) = (x+4)(x-3)(x+3)(x-9)(x+2).
- **11.** Without using a calculator, find the end behavior, maximum possible zeros, and maximum possible turning points of $f(x) = 5x^9 + 6x^5 - 3x^3 + 5x - 4.$